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Abstract

Video Super Resolution (VSR) aims to generate high-
resolution video from degraded low-resolution input video.
Generative models, particularly diffusion models, have
demonstrated strong performance on VSR tasks when
trained and benchmarked on synthetic data. However,
there exists a significant distributional gap between datasets
ubiquitously used in the VSR literature, and low-quality
video likely to occur in real-world settings. Minimizing this
gap is critical to ensuring the effectiveness of VSR mod-
els in real-world applications, such as in self-driving cars
or enhancing security footage data. To address this is-
sue, we propose a novel video data augmentation method
which makes use of random rotation and intensity scaling
to emulate camera shake and artifacts induced by glare. We
employ this data augmentation strategy to create the Aug-
mented Video Low Quality Dataset (AVLQ), which we use
to benchmark the performance of the Motion Guided La-
tent Diffusion model (MGLD) against the Recurrent Video
Restoration Transformer (RVRT) in more realistic settings.
We find that both models have reduced performance on
videos with our degradations. However, the MGLD diffu-
sion model outperforms the RVRT transformer model with
respect to all quantitative metrics and subjective inspection.
Our results suggest that the diffusion model is more robust
to real world noise compared to the transformer model and
that future VSR models may benefit from training on data
with our realistic degradations.

1. Introduction

Video super-resolution [1] aims to generate high-
resolution (HR) video from its degraded low-resolution
(LR) counterpart. Real world VSR has gained attention
from researchers for its high potential value in practi-
cal applications such as camera-phone video enhancement
and online video streaming. Compared with image super-
resolution, VSR incurs increased computational complexity
as it must aggregate information temporally across frame
sequences rather than over a single frame as videos need to
stay temporally consistent.

VSR can be broken down into synthetic and real-world
subdomains. In synthetic VSR, LR-HR training pairs are
formed using a known degradation approach. Typically,
synthetic methods assume overly idealized degradations
and use fixed blur and bicubic downsampling. Unfortu-
nately, using these degradations in training leads to poor
model generalizability since these convenient abstractions
do not fully model real-world degradation processes. For
example, viral internet videos often incur unknown amounts
of lossy compression, camera shake, motion blur, and inten-
sity artifacts. Unlike synthetic VSR, real-world VSR [4,23]
aims to increase the resolution of videos whose degradation
process is completely unknown.

Previous attempts to approximate realistic degradation
processes have been successful. Wang et al. approximate
these realistic degradations by applying two rounds of blur,
downsampling, noise, and JPEG compression. They train
Real-ESRGAN with their data augmentations, achieving
qualitative improvements in noise removal [18]. We build
off of Wang et al. contributions by investigating other re-
alistic degradation processes likely to occur in real-world
applications of VSR.

Diffusion models have shown promising results for real-
world image and VSR tasks [16]. In particular, latent dif-
fusion models (LDMs) have shown incredible promise with
their strong generative priors which ensure that outputs re-
mains consistent with the underlying data distribution [19].
Most VSR research neglects realistic data considerations to
focus on novel model architectures. Consequently, bench-
marks for real world video are scarce and the performance
of real world VSR for LDMs remains underexplored. We
believe training on more realistic data is necessary to im-
prove model generalizability. To demonstrate this, we aim
to evaluate whether the MGLD model maintains high per-
formance under real world data augmentations like intensity
scaling (glare) and random rotation (shake).

The contributions of our report are summarized as fol-
lows. First, we introduce a stochastic method for synthe-
sizing a realistic Augmented Video Low-Quality (AVLQ)
benchmark dataset with desirable qualities. Second, using
our newly created benchmark dataset, we investigate the
performance of a pre-trained LDM on our realistic data and



Figure 1. Example MGLD super-resolved results (lower-left triangles) versus low-resolution input (upper-right triangles) on video frames
from the Augmented Video Low Quality dataset (AVLQ). The top row is non-augmented LR video. The bottom row has random rotation
parameter δ and intensity scaling applied. To create this figure, we upsampled the LR video frames with bicubic interpolation.

compare it with Recurrent Video Restoration Transformer
(RVRT), a transformer-based VSR model.

2. Related Work

Real-World Super-Resolution. Most existing VSR
techniques are trained on synthetic data with simplistic
degradation, such as bicubic resizing or downsampling af-
ter Gaussian blur [14, 17]. Additionally, these models are
benchmarked on highly-curated synthetic datasets, such
as REDS4 [10], UDM10 [21], and SPMCS [15]. These
datasets cannot assess the generalizability of VSR methods
as they are too small and lack meaningful real-world degra-
dation.

There have been previous efforts to create more realistic
benchmark datasets. RealVSR [20] filmed short videos on
an iPhone to better capture real-world degradation. Chan
et al. created the VideoLQ dataset [4], a compilation of 50
videos scraped from YouTube and Flicker, each 100 frames
long. These datasets are effective in some cases, but their
degradation methods can be labor-intensive and lack gener-
alizability by containing camera-specific degradation.

Model Selection VSR has seen significant advance-
ments powered by novel deep learning architectures [2,
3, 6]. Generative model classes, such as diffusion and
transformer-based models, are particularly well-motivated
for real-world VSR where degradation processes are impos-
sible to explicitly model. Although these models have en-
abled the generation of high fidelity synthetic data, they are

subject to poor performance at inference time if there are
distributional changes between the training and test data.
Because generative models have achieved unparalleled per-
formance in other fields, we propose novel data augmenta-
tion strategies with the goal of more fully unlocking gener-
ative power for real-world VSR.

We benchmark a latent diffusion model, MGLD [19], on
our AVLQ dataset and compare performance to an older
transformer model. We aim to benchmark the diffusion
model’s performance on our AVLQ dataset because they
have shown greater competence at reconstructing the fine
details of HR content compared with other generative mod-
eling methods such as general adversarial networks (GANs)
[19]. Additionally, due to the relative novelty of diffusion
models, less work has been published with respect to real-
world VSR, leaving room for exploration.

3. Methodology

Given a real-world video sequence of N frames, our goal
is to synthesize realistic LR-HR testing pairs and character-
ize the strength of MGLD when applied to real-world VSR
problems. Inspired by the recent success of diffusion mod-
els to curated VSR datasets [4, 19], we investigate applying
these generative priors to real-world testing data.

3.1. Latent Diffusion Model

Diffusion models [5] are a class of generative models
which transform Gaussian noise into data samples through



a forward and backward Markovian process. The forward
process, which transforms the data distribution into a prior
distribution, can be described by:

q(zt | zt−1) := N (zt, (1− βt)zt−1, βtI) (1)

where Gaussian noise is iteratively applied to the sample zt
at time-step t − 1 to produce zt−1, guided by a variance
scheduler defined by {βt}Tt=1 along the diffusion process.
The backwards process seeks to reverse the forward process
and generate a distribution that resembles the prior z0. The
formulation of the learnable transition kernel is:

pθ(zt−1 | zt) := N (zt−1 | µθ(zt, γt),Σθ(zt, γt)) (2)

where µθ and Σθ are learnable parameters. To guide the
backward diffusion in learning the forward process, we
minimize the Kullback-Leibler (KL) divergence of the joint
distribution of the forward and reverse sequences.

Latent Diffusion Models (LDMs) [12] have significantly
increased the efficiency of diffusion models by employing
Variational Autoencoders (VAEs) [7] to map input data to
a latent space. Because the diffusion model no longer opti-
mizes in the pixel space, LDMs take less computational re-
sources and may be trained on massive datasets. Pre-trained
LDMs are equipped with powerful prior knowledge about
natural images, which may be utilized by various domains
to produce high-quality content. For this reason, we believe
LDMs are best suited for tackling the domain of real-world
VSR.

We utilize a pre-trained Motion Guided Latent Diffu-
sion Model (MGLD) [19] for experimentation. The MGLD
model has been specifically fine-tuned with a temporally-
aware sequence decoder built on top of a pre-trained VAE
decoder. Its design facilitates interleaved spatial-temporal
interactions and restores details with high continuity while
incurring minimal computational cost. This model has
shown improved qualitative performance over alternative
models. Despite this, the model was only tested on a
few real-world videos, none of which contained significant
amounts of shake or intensity degradation.

3.2. Capture of Real-World Video

A quality real-world VSR dataset must cover a wide
range of degradations, content, and resolutions. We have
compiled the ALQ dataset consisting of 50 short single-
scene videos either filmed on an iPhone 13 or from
YouTube. To ensure the diversity in potential degradation,
we select videos with different scenes and resolutions. For
each video, we extract a sequence that is 100-150 frames
long. For this project we only investigate videos with no
scene transitions in order to accurately benchmark methods
that rely on longer-term propagation. Additionally, to incor-
porate existing research into our work, we add some of the

VideoLQ dataset to our dataset. These videos have down-
sampling, compression, and noise pre-applied. Thus, when
applying our own degradation to these videos, we only ap-
ply shake and glare methods.

3.3. Augmented Video Low Quality Dataset

We propose a stochastic degradation approach. Our main
focus is adding two novel degradation types: shake and in-
tensity scaling. We call video that contains these traits aug-
mented. We believe these to be common traits of real-world
video that must be taken into account when synthesizing
LR-HR testing pairs. Prior real-world datasets [4,11,22] do
not address these categories of degradation.We anticipate
that the introduction of shake, which increases temporal in-
consistencies, will significantly challenge the performance
of VSR models.

Video Shake. Given a video with N frames and a spec-
ified maximum rotational angle of δ, our process begins by
zooming into each frame to mitigate the appearance of black
borders that appear when rotating pixels past the border of
the frame. We use a δ = 5◦ and then rotate each frame
sequentially within the range of [δ, δ], completing four full
rotations across the entire video. To simulate camera shake,
we introduce a random rotation to each frame, varying be-
tween [−2◦, 2◦]. The result is a video that appears both
dynamically moving and shaky.

Intensity Scaling. To simulate glare, we choose a short
interval of frames randomly and scale the pixel values by 2,
clipping pixel values at 255.

Along with our two novel augmentations, we apply more
common degradations, such as random blur, resize, and
JPEG compression, to every frame of the video. Addition-
ally, we compress the video to reduce its size. The ran-
domized blur is applied using a Gaussian blur kernel with
mean zero and uniformly sampled variance. The video is
then resized (respecting the original aspect ratio) by a fac-
tor of 1

α where α ∈ [2, 4]. Video compression is applied by
randomly selecting a codex and bitrate.

Fig. 1 displays video frames before and after applying
our augmentation methods. The bottom row corresponds to
augmented data. In particular, frames 0 and 120 show video
shake, while frames 60 and 90 display intensity scaling.

4. Experiments
4.1. Experimental Settings

We apply our degradation methods to the AVLQ dataset
and then perform the following three experiments. First,
we quantitatively and qualitatively evaluate MGLD’s HR
reconstructed video to assess output quality and bench-
mark the model’s performance. Second, we compare the
MGLD’s performance on data with shake and intensity scal-
ing and data without shake and intensity scaling but with



Figure 2. Comparison of augmented and non-augmented data. Augmented data refers to degraded video with shake and intensity scaling
applied. Non-augmented data has standard degradations applied (blur, downsampling etc.) but does not have shake and intensity scaling.
Note that higher PSNR represents a higher quality reconstruction and that a lower NIQE score reflects higher quality frames.

other common degradations applied. Lastly, we compare
the performance of MGLD with that of the Recurrent Video
Restoration Transformer (RVRT) [8], another VSR model
that has achieved good results when trained on synthetic
data.

Evaluation Metrics. To evaluate performance, we use
two common metrics: Peak Signal to Noise Ratio (PSNR)
and Natural Image Quality Evaluator (NIQE) [9]. Because
PSNR and NIQE are image evaluation metrics, to evalu-
ate video we take the average evaluation value between all
frames of a HR reconstructed output.

PSNR is one of the most widely used techniques to eval-
uate image reconstruction quality. It represents the ratio be-
tween the maximum pixel value L and the Mean Squared
Error (MSE) between the reconstructed HR image y′ and
the actual image y. The PSNR equation P is given by:

P (y, y′) = 10 · log10

(
L2

1
N

∑N
i=1[y − y′]2

)
(3)

Despite being popular, PSNR does not accurately match
human perception [13]. To remedy this and to make sure
the output video has good perceptual quality, we also eval-
uate model performance using NIQE. NIQE is designed to
approximate human perception and is a no-reference metric
that only makes use of measurable deviations from statisti-
cal regularities observed in natural images. NIQE is com-
monly used as a blind evaluation metric in the literature. It
should be noted that lower NIQE scores are desirable.

We did not focus on temporal evaluation when running
our models. However, to the naked eye, MGLD performed
very well preserving temporal consistency. Given more
time, further research into this area would be desirable.

4.2. Experimental Results

Output Evaluation. We first show the quantitative
evaluation results for MGLD’s performance on the AVLQ
dataset in Fig. 3. As shown from Fig. 3, MGLD’s super-
resolved output is a significant improvement over the LR
input with respect to PSNR and NIQE evaluation scores and
is consistent across the entire dataset. Across all 50 AVLQ
videos, MGLD produced a mean PSNR score of 25.282 and
an average NIQE score of 4.346. Qualitatively, we compare
input LR video frames with super-resolved output frames
and see that MGLD is capable of removing complex spatial-
variant degradation and enhancing visual detail, but notice-
ably underperforms when the video frame has significant
shake. For example, the structure of the edges of the plane
are unclear in frame 0, but are quite clear in frame 30 when
the video has no shake. Interestingly, MGLD handles inten-
sity scaling quite well. We find that super-resolved output
for intensity-scaled frames remain just as clear as their non-
scaled counterparts. This is explicitly shown in frame 60 of
Fig. 2 .

Shake and Intensity Scaling Comparison. Next, we
compare the evaluation metrics between data augmented
with shake and intensity scaling and data that only has more
common degradations (blur, downsampling, etc.). Fig. 3
shows the PSNR and NIQE scores for augmented versus
non-augmented data. We see that MGLD performs signifi-
cantly worse on augmented data, indicating that the model
struggles to generalize when the initial distribution is in-
jected with heavy noise. The non-augmented data had an
average PSNR score of 4.005 and an average NIQE score
of 27.638. These results indicate that training on larger
datasets with distributions more similar to AVLQ are neces-
sary to improve model performance on general real-world
data.

RVRT Comparison. Finally, we compare MGLD to



Figure 3. Top Row: Original video with degradation pipeline
applied. Second Row: Super-resolved output with RVRT (trans-
former model). Bottom Row: Super-resolved output with MGLD
(diffusion model).

RVRT and show that MGLD outperforms the transformer
model by a significant margin. We chose RVRT as it in-
tegrates a recurrent neural network structure which helps
maintain temporal consistency across video frames. Addi-
tionally, its transformer component enables the model to
capture complex spatial and temporal correlations within
the video data. This dual capability has made RVRT a foun-
dational model within VSR literature. However, because
RVRT was trained on simple degradations, it does not gen-
eralize well to the real-world AVLQ dataset. Our compari-
son results are shown in Tabs. 1 and 2. We see that MGLD
has more desirable PSNR and NIQE scores across both aug-
mented and non-augmented data. Qualitatively, RVRT fails
to enhance finer details within video frames as shown in
Fig. 2. Even with augmentations, MGLD clarifies the edges
of the plane and smooths the body.

Table 1. Mean and median NIQE values for MGLD and RVRT
on augmented (contains shake and intensity scaling) and non-
augmented videos.

AVLQ Dataset MGLD RVRT
Mean Median Mean Median

Non-augmented 4.005 3.958 5.458 5.257
Augmented 4.346 4.303 6.227 6.134

Table 2. Mean and median PSNR values. Compares same datasets
and models as Tab. 1.

AVLQ Dataset MGLD RVRT
Mean Median Mean Median

Non-augmented 27.638 27.503 26.336 26.533
Augmented 25.282 25.061 23.265 24.214

5. Conclusion
As our results show that both the MGLD and RVRT per-

form worse on our AVLQ dataset, which indicates the need
for more realistic training data for VSR generative models.
Our proposed method for synthesizing real-world data adds
novel degradations, namely shake and intensity scaling, that
should be an integral part of any real-world VSR dataset.
Through our experimentation using our AVLQ dataset, we
demonstrate that RVRT, a more foundational VSR model,
does not generalize when faced with unknown real-world
data. Instead, diffusion models show much more promise to
successfully handle video data with unknown degradation.
Thus, we believe that diffusion models have more potential
with respect to real-world VSR and that future work should
focus on assessing diffusion models by training and bench
marking them on real world datasets like AVLQ. Improving
the performance of diffusion models on such datasets could
significantly advance not only VSR but also the broader
field of computer vision by enhancing models’ ability to
generalize to real-world scenarios.

6. Division of Work
The work for this project was equally divided amongst

the three members. Each member (Elliot, Patrick, Jacob)
was responsible for a single experiment and the creation of
a figure. Jacob coded a degradation pipeline that incorpo-
rated blur, downsampling, shake, and intensity scaling and
was responsible for benchmarking the MGLD model. Pat
was responsible for comparing augmented data and non-
augmented data and helped source original data for the ALQ
dataset. Elliot was responsible for comparing the RVRT
model against the MGLD model, capturing real-world data,
and running evaluation metric scripts. All members con-
tributed equally by writing this report and creating presen-
tation slides.
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